Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
IEEE Trans Pattern Anal Mach Intell ; 45(12): 15604-15618, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37639415

RESUMEN

Learning time-series representations when only unlabeled data or few labeled samples are available can be a challenging task. Recently, contrastive self-supervised learning has shown great improvement in extracting useful representations from unlabeled data via contrasting different augmented views of data. In this work, we propose a novel Time-Series representation learning framework via Temporal and Contextual Contrasting (TS-TCC) that learns representations from unlabeled data with contrastive learning. Specifically, we propose time-series-specific weak and strong augmentations and use their views to learn robust temporal relations in the proposed temporal contrasting module, besides learning discriminative representations by our proposed contextual contrasting module. Additionally, we conduct a systematic study of time-series data augmentation selection, which is a key part of contrastive learning. We also extend TS-TCC to the semi-supervised learning settings and propose a Class-Aware TS-TCC (CA-TCC) that benefits from the available few labeled data to further improve representations learned by TS-TCC. Specifically, we leverage the robust pseudo labels produced by TS-TCC to realize a class-aware contrastive loss. Extensive experiments show that the linear evaluation of the features learned by our proposed framework performs comparably with the fully supervised training. Additionally, our framework shows high efficiency in few labeled data and transfer learning scenarios.

2.
J Biomed Inform ; 142: 104388, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37178781

RESUMEN

Influenza viruses pose great threats to public health and cause enormous economic losses every year. Previous work has revealed the viral factors associated with the virulence of influenza viruses in mammals. However, taking prior viral knowledge represented by heterogeneous categorical and discrete information into account to explore virus virulence is scarce in the existing work. How to make full use of the preceding domain knowledge in virulence study is challenging but beneficial. This paper proposes a general framework named ViPal for virulence prediction in mice that incorporates discrete prior viral mutation and reassortment information based on all eight influenza segments. The posterior regularization technique is leveraged to transform prior viral knowledge into constraint features and integrated into the machine learning models. Experimental results on influenza genomic datasets validate that our proposed framework can improve virulence prediction performance over baselines. The comparison between ViPal and other existing methods shows the computational efficiency of our framework with comparable or superior performance. Moreover, the interpretable analysis through SHAP (SHapley Additive exPlanations) identifies the scores of constraint features contributing to the prediction. We hope this framework could provide assistance for the accurate detection of influenza virulence and facilitate flu surveillance.


Asunto(s)
Gripe Humana , Orthomyxoviridae , Animales , Ratones , Humanos , Virulencia/genética , Mutación , Orthomyxoviridae/genética , Genómica , Mamíferos
3.
Artículo en Inglés | MEDLINE | ID: mdl-37022869

RESUMEN

The past few years have witnessed a remarkable advance in deep learning for EEG-based sleep stage classification (SSC). However, the success of these models is attributed to possessing a massive amount of labeled data for training, limiting their applicability in real-world scenarios. In such scenarios, sleep labs can generate a massive amount of data, but labeling can be expensive and time-consuming. Recently, the self-supervised learning (SSL) paradigm has emerged as one of the most successful techniques to overcome labels' scarcity. In this paper, we evaluate the efficacy of SSL to boost the performance of existing SSC models in the few-labels regime. We conduct a thorough study on three SSC datasets, and we find that fine-tuning the pretrained SSC models with only 5% of labeled data can achieve competitive performance to the supervised training with full labels. Moreover, self-supervised pretraining helps SSC models to be more robust to data imbalance and domain shift problems.

4.
Front Bioinform ; 3: 1123993, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36875146

RESUMEN

There exist several databases that provide virus-host protein interactions. While most provide curated records of interacting virus-host protein pairs, information on the strain-specific virulence factors or protein domains involved, is lacking. Some databases offer incomplete coverage of influenza strains because of the need to sift through vast amounts of literature (including those of major viruses including HIV and Dengue, besides others). None have offered complete, strain specific protein-protein interaction records for the influenza A group of viruses. In this paper, we present a comprehensive network of predicted domain-domain interaction(s) (DDI) between influenza A virus (IAV) and mouse host proteins, that will allow the systematic study of disease factors by taking the virulence information (lethal dose) into account. From a previously published dataset of lethal dose studies of IAV infection in mice, we constructed an interacting domain network of mouse and viral protein domains as nodes with weighted edges. The edges were scored with the Domain Interaction Statistical Potential (DISPOT) to indicate putative DDI. The virulence network can be easily navigated via a web browser, with the associated virulence information (LD50 values) prominently displayed. The network will aid influenza A disease modeling by providing strain-specific virulence levels with interacting protein domains. It can possibly contribute to computational methods for uncovering influenza infection mechanisms mediated through protein domain interactions between viral and host proteins. It is available at https://iav-ppi.onrender.com/home.

5.
Sci Rep ; 13(1): 558, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36631567

RESUMEN

Studies using machine learning (ML) approaches have reported high diagnostic accuracies for glaucoma detection. However, none assessed model performance across ethnicities. The aim of the study is to externally validate ML models for glaucoma detection from optical coherence tomography (OCT) data. We performed a prospective, cross-sectional study, where 514 Asians (257 glaucoma/257 controls) were enrolled to construct ML models for glaucoma detection, which was then tested on 356 Asians (183 glaucoma/173 controls) and 138 Caucasians (57 glaucoma/81 controls). We used the retinal nerve fibre layer (RNFL) thickness values produced by the compensation model, which is a multiple regression model fitted on healthy subjects that corrects the RNFL profile for anatomical factors and the original OCT data (measured) to build two classifiers, respectively. Both the ML models (area under the receiver operating [AUC] = 0.96 and accuracy = 92%) outperformed the measured data (AUC = 0.93; P < 0.001) for glaucoma detection in the Asian dataset. However, in the Caucasian dataset, the ML model trained with compensated data (AUC = 0.93 and accuracy = 84%) outperformed the ML model trained with original data (AUC = 0.83 and accuracy = 79%; P < 0.001) and measured data (AUC = 0.82; P < 0.001) for glaucoma detection. The performance with the ML model trained on measured data showed poor reproducibility across different datasets, whereas the performance of the compensated data was maintained. Care must be taken when ML models are applied to patient cohorts of different ethnicities.


Asunto(s)
Glaucoma , Células Ganglionares de la Retina , Humanos , Estudios Transversales , Reproducibilidad de los Resultados , Estudios Prospectivos , Presión Intraocular , Curva ROC , Sensibilidad y Especificidad , Glaucoma/diagnóstico , Aprendizaje Automático , Tomografía de Coherencia Óptica/métodos
6.
Artículo en Inglés | MEDLINE | ID: mdl-35439138

RESUMEN

Protein secondary structure (SS) prediction is a classic problem of computational biology and is widely used in structural characterization and to infer homology. While most SS predictors have been trained on thousands of sequences, a previous approach had developed a compact model of training proteins that used a C-Alpha, C-Beta Side Chain (CABS)-algorithm derived energy based feature representation. Here, the previous approach is extended to Deep Belief Networks (DBN). Deep learning methods are notorious for requiring large datasets and there is a wide consensus that training deep models from scratch on small datasets, works poorly. By contrast, we demonstrate a simple DBN architecture containing a single hidden layer, trained only on the CB513 dataset. Testing on an independent set of G Switch proteins improved the Q 3 score of the previous compact model by almost 3%. The findings are further confirmed by comparison to several deep learning models which are trained on thousands of proteins. Finally, the DBN performance is also compared with Position Specific Scoring Matrix (PSSM)-profile based feature representation. The importance of (i) structural information in protein feature representation and (ii) complementary small dataset learning approaches for detection of structural fold switching are demonstrated.


Asunto(s)
Algoritmos , Biología Computacional , Consenso , Posición Específica de Matrices de Puntuación , Dominios Proteicos
7.
Brief Bioinform ; 23(6)2022 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-36094101

RESUMEN

Epitope residues located on viral surface proteins are of immense interest in immunology and related applications such as vaccine development, disease diagnosis and drug design. Most tools rely on sequence-based statistical comparisons, such as information entropy of residue positions in aligned columns to infer location and properties of epitope sites. To facilitate cross-structural comparisons of epitopes on viral surface proteins, a python-based extraction tool implemented with Jupyter notebook is presented (Jupytope). Given a viral antigen structure of interest, a list of known epitope sites and a reference structure, the corresponding epitope structural properties can quickly be obtained. The tool integrates biopython modules for commonly used software such as NACCESS, DSSP as well as residue depth and outputs a list of structure-derived properties such as dihedral angles, solvent accessibility, residue depth and secondary structure that can be saved in several convenient data formats. To ensure correct spatial alignment, Jupytope takes a list of given epitope sites and their corresponding reference structure and aligns them before extracting the desired properties. Examples are demonstrated for epitopes of Influenza and severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) viral strains. The extracted properties assist detection of two Influenza subtypes and show potential in distinguishing between four major clades of SARS-CoV2, as compared with randomized labels. The tool will facilitate analytical and predictive works on viral epitopes through the extracted structural information. Jupytope and extracted datasets are available at https://github.com/shamimarashid/Jupytope.


Asunto(s)
COVID-19 , Gripe Humana , Humanos , Epítopos , SARS-CoV-2 , ARN Viral , Proteínas de la Membrana , Biología Computacional
8.
Brief Bioinform ; 23(5)2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-35849093

RESUMEN

The coronavirus disease 2019 pandemic has alerted people of the threat caused by viruses. Vaccine is the most effective way to prevent the disease from spreading. The interaction between antibodies and antigens will clear the infectious organisms from the host. Identifying B-cell epitopes is critical in vaccine design, development of disease diagnostics and antibody production. However, traditional experimental methods to determine epitopes are time-consuming and expensive, and the predictive performance using the existing in silico methods is not satisfactory. This paper develops a general framework to predict variable-length linear B-cell epitopes specific for human-adapted viruses with machine learning approaches based on Protvec representation of peptides and physicochemical properties of amino acids. QR decomposition is incorporated during the embedding process that enables our models to handle variable-length sequences. Experimental results on large immune epitope datasets validate that our proposed model's performance is superior to the state-of-the-art methods in terms of AUROC (0.827) and AUPR (0.831) on the testing set. Moreover, sequence analysis also provides the results of the viral category for the corresponding predicted epitopes with high precision. Therefore, this framework is shown to reliably identify linear B-cell epitopes of human-adapted viruses given protein sequences and could provide assistance for potential future pandemics and epidemics.


Asunto(s)
COVID-19 , Virus , Aminoácidos , Mapeo Epitopo/métodos , Epítopos de Linfocito B , Humanos , Aprendizaje Automático , Péptidos/química
9.
Artículo en Inglés | MEDLINE | ID: mdl-35737606

RESUMEN

Unsupervised domain adaptation (UDA) has successfully addressed the domain shift problem for visual applications. Yet, these approaches may have limited performance for time series data due to the following reasons. First, they mainly rely on the large-scale dataset (i.e., ImageNet) for source pretraining, which is not applicable for time series data. Second, they ignore the temporal dimension on the feature space of the source and target domains during the domain alignment step. Finally, most of the prior UDA methods can only align the global features without considering the fine-grained class distribution of the target domain. To address these limitations, we propose a SeLf-supervised AutoRegressive Domain Adaptation (SLARDA) framework. In particular, we first design a self-supervised (SL) learning module that uses forecasting as an auxiliary task to improve the transferability of source features. Second, we propose a novel autoregressive domain adaptation technique that incorporates temporal dependence of both source and target features during domain alignment. Finally, we develop an ensemble teacher model to align class-wise distribution in the target domain via a confident pseudo labeling approach. Extensive experiments have been conducted on three real-world time series applications with 30 cross-domain scenarios. The results demonstrate that our proposed SLARDA method significantly outperforms the state-of-the-art approaches for time series domain adaptation. Our source code is available at: https://github.com/mohamedr002/SLARDA.

10.
Bioinformatics ; 38(8): 2254-2262, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35171981

RESUMEN

MOTIVATION: Graphs or networks are widely utilized to model the interactions between different entities (e.g. proteins, drugs, etc.) for biomedical applications. Predicting potential interactions/links in biomedical networks is important for understanding the pathological mechanisms of various complex human diseases, as well as screening compound targets for drug discovery. Graph neural networks (GNNs) have been utilized for link prediction in various biomedical networks, which rely on the node features extracted from different data sources, e.g. sequence, structure and network data. However, it is challenging to effectively integrate these data sources and automatically extract features for different link prediction tasks. RESULTS: In this article, we propose a novel Pre-Training Graph Neural Networks-based framework named PT-GNN to integrate different data sources for link prediction in biomedical networks. First, we design expressive deep learning methods [e.g. convolutional neural network and graph convolutional network (GCN)] to learn features for individual nodes from sequence and structure data. Second, we further propose a GCN-based encoder to effectively refine the node features by modelling the dependencies among nodes in the network. Third, the node features are pre-trained based on graph reconstruction tasks. The pre-trained features can be used for model initialization in downstream tasks. Extensive experiments have been conducted on two critical link prediction tasks, i.e. synthetic lethality (SL) prediction and drug-target interaction (DTI) prediction. Experimental results demonstrate PT-GNN outperforms the state-of-the-art methods for SL prediction and DTI prediction. In addition, the pre-trained features benefit improving the performance and reduce the training time of existing models. AVAILABILITY AND IMPLEMENTATION: Python codes and dataset are available at: https://github.com/longyahui/PT-GNN. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Descubrimiento de Drogas , Redes Neurales de la Computación , Humanos , Desarrollo de Medicamentos , Proteínas
11.
Methods ; 198: 11-18, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34419588

RESUMEN

Coronavirus Disease-19 (COVID-19) has lead global epidemics with high morbidity and mortality. However, there are currently no proven effective drugs targeting COVID-19. Identifying drug-virus associations can not only provide insights into the understanding of drug-virus interaction mechanism, but also guide and facilitate the screening of compound candidates for antiviral drug discovery. Since conventional experiment methods are time-consuming, laborious and expensive, computational methods to identify potential drug candidates for viruses (e.g., COVID-19) provide an alternative strategy. In this work, we propose a novel framework of Heterogeneous Graph Attention Networks for Drug-Virus Association predictions, named HGATDVA. First, we fully incorporate multiple sources of biomedical data, e.g., drug chemical information, virus genome sequences and viral protein sequences, to construct abundant features for drugs and viruses. Second, we construct two drug-virus heterogeneous graphs. For each graph, we design a self-enhanced graph attention network (SGAT) to explicitly model the dependency between a node and its local neighbors and derive the graph-specific representations for nodes. Third, we further develop a neural network architecture with tri-aggregator to aggregate the graph-specific representations to generate the final node representations. Extensive experiments were conducted on two datasets, i.e., DrugVirus and MDAD, and the results demonstrated that our model outperformed 7 state-of-the-art methods. Case study on SARS-CoV-2 validated the effectiveness of our model in identifying potential drugs for viruses.


Asunto(s)
COVID-19 , Preparaciones Farmacéuticas , Interacciones Farmacológicas , Humanos , Redes Neurales de la Computación , SARS-CoV-2
12.
Brief Bioinform ; 23(1)2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-34471921

RESUMEN

Graph is a natural data structure for describing complex systems, which contains a set of objects and relationships. Ubiquitous real-life biomedical problems can be modeled as graph analytics tasks. Machine learning, especially deep learning, succeeds in vast bioinformatics scenarios with data represented in Euclidean domain. However, rich relational information between biological elements is retained in the non-Euclidean biomedical graphs, which is not learning friendly to classic machine learning methods. Graph representation learning aims to embed graph into a low-dimensional space while preserving graph topology and node properties. It bridges biomedical graphs and modern machine learning methods and has recently raised widespread interest in both machine learning and bioinformatics communities. In this work, we summarize the advances of graph representation learning and its representative applications in bioinformatics. To provide a comprehensive and structured analysis and perspective, we first categorize and analyze both graph embedding methods (homogeneous graph embedding, heterogeneous graph embedding, attribute graph embedding) and graph neural networks. Furthermore, we summarize their representative applications from molecular level to genomics, pharmaceutical and healthcare systems level. Moreover, we provide open resource platforms and libraries for implementing these graph representation learning methods and discuss the challenges and opportunities of graph representation learning in bioinformatics. This work provides a comprehensive survey of emerging graph representation learning algorithms and their applications in bioinformatics. It is anticipated that it could bring valuable insights for researchers to contribute their knowledge to graph representation learning and future-oriented bioinformatics studies.


Asunto(s)
Biología Computacional , Redes Neurales de la Computación , Algoritmos , Biología Computacional/métodos , Conocimiento , Aprendizaje Automático
13.
IEEE Trans Cybern ; 52(11): 12231-12244, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33961570

RESUMEN

The rapid emergence of high-dimensional data in various areas has brought new challenges to current ensemble clustering research. To deal with the curse of dimensionality, recently considerable efforts in ensemble clustering have been made by means of different subspace-based techniques. However, besides the emphasis on subspaces, rather limited attention has been paid to the potential diversity in similarity/dissimilarity metrics. It remains a surprisingly open problem in ensemble clustering how to create and aggregate a large population of diversified metrics, and furthermore, how to jointly investigate the multilevel diversity in the large populations of metrics, subspaces, and clusters in a unified framework. To tackle this problem, this article proposes a novel multidiversified ensemble clustering approach. In particular, we create a large number of diversified metrics by randomizing a scaled exponential similarity kernel, which are then coupled with random subspaces to form a large set of metric-subspace pairs. Based on the similarity matrices derived from these metric-subspace pairs, an ensemble of diversified base clusterings can be thereby constructed. Furthermore, an entropy-based criterion is utilized to explore the cluster wise diversity in ensembles, based on which three specific ensemble clustering algorithms are presented by incorporating three types of consensus functions. Extensive experiments are conducted on 30 high-dimensional datasets, including 18 cancer gene expression datasets and 12 image/speech datasets, which demonstrate the superiority of our algorithms over the state of the art. The source code is available at https://github.com/huangdonghere/MDEC.


Asunto(s)
Benchmarking , Neoplasias , Algoritmos , Análisis por Conglomerados , Humanos , Neoplasias/genética , Programas Informáticos
14.
IEEE/ACM Trans Comput Biol Bioinform ; 19(6): 3497-3506, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34469306

RESUMEN

The rapid evolution of influenza viruses constantly leads to the emergence of novel influenza strains that are capable of escaping from population immunity. The timely determination of antigenic variants is critical to vaccine design. Empirical experimental methods like hemagglutination inhibition (HI) assays are time-consuming and labor-intensive, requiring live viruses. Recently, many computational models have been developed to predict the antigenic variants without considerations of explicitly modeling the interdependencies between the channels of feature maps. Moreover, the influenza sequences consisting of similar distribution of residues will have high degrees of similarity and will affect the prediction outcome. Consequently, it is challenging but vital to determine the importance of different residue sites and enhance the predictive performance of influenza antigenicity. We have proposed a 2D convolutional neural network (CNN) model to infer influenza antigenic variants (IAV-CNN). Specifically, we apply a new distributed representation of amino acids, named ProtVec that can be applied to a variety of downstream proteomic machine learning tasks. After splittings and embeddings of influenza strains, a 2D squeeze-and-excitation CNN architecture is constructed that enables networks to focus on informative residue features by fusing both spatial and channel-wise information with local receptive fields at each layer. Experimental results on three influenza datasets show IAV-CNN achieves state-of-the-art performance combining the new distributed representation with our proposed architecture. It outperforms both traditional machine algorithms with the same feature representations and the majority of existing models in the independent test data. Therefore we believe that our model can be served as a reliable and robust tool for the prediction of antigenic variants.


Asunto(s)
Virus de la Influenza A , Gripe Humana , Humanos , Virus de la Influenza A/genética , Proteómica , Antígenos Virales/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Redes Neurales de la Computación
15.
BMC Bioinformatics ; 22(1): 609, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34930120

RESUMEN

BACKGROUND: Long non-coding RNAs (lncRNAs) play significant roles in varieties of physiological and pathological processes.The premise of the lncRNA functional study is that the lncRNAs are identified correctly. Recently, deep learning method like convolutional neural network (CNN) has been successfully applied to identify the lncRNAs. However, the traditional CNN considers little relationships among samples via an indirect way. RESULTS: Inspired by the Siamese Neural Network (SNN), here we propose a novel network named Class Similarity Network in coding RNA and lncRNA classification. Class Similarity Network considers more relationships among input samples in a direct way. It focuses on exploring the potential relationships between input samples and samples from both the same class and the different classes. To achieve this, Class Similarity Network trains the parameters specific to each class to obtain the high-level features and represents the general similarity to each class in a node. The comparison results on the validation dataset under the same conditions illustrate the superiority of our Class Similarity Network to the baseline CNN. Besides, our method performs effectively and achieves state-of-the-art performances on two test datasets. CONCLUSIONS: We construct Class Similarity Network in coding RNA and lncRNA classification, which is shown to work effectively on two different datasets by achieving accuracy, precision, and F1-score as 98.43%, 0.9247, 0.9374, and 97.54%, 0.9990, 0.9860, respectively.


Asunto(s)
ARN Largo no Codificante , Redes Neurales de la Computación , ARN Largo no Codificante/genética
16.
Front Mol Biosci ; 8: 646288, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34490344

RESUMEN

Predicting the functional consequences of single point mutations has relevance to protein function annotation and to clinical analysis/diagnosis. We developed and tested Packpred that makes use of a multi-body clique statistical potential in combination with a depth-dependent amino acid substitution matrix (FADHM) and positional Shannon entropy to predict the functional consequences of point mutations in proteins. Parameters were trained over a saturation mutagenesis data set of T4-lysozyme (1,966 mutations). The method was tested over another saturation mutagenesis data set (CcdB; 1,534 mutations) and the Missense3D data set (4,099 mutations). The performance of Packpred was compared against those of six other contemporary methods. With MCC values of 0.42, 0.47, and 0.36 on the training and testing data sets, respectively, Packpred outperforms all methods in all data sets, with the exception of marginally underperforming in comparison to FADHM in the CcdB data set. A meta server analysis was performed that chose best performing methods of wild-type amino acids and for wild-type mutant amino acid pairs. This led to an increase in the MCC value of 0.40 and 0.51 for the two meta predictors, respectively, on the Missense3D data set. We conjecture that it is possible to improve accuracy with better meta predictors as among the seven methods compared, at least one method or another is able to correctly predict ∼99% of the data.

17.
Genome Biol ; 22(1): 226, 2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34399797

RESUMEN

Chromatin interactions play important roles in regulating gene expression. However, the availability of genome-wide chromatin interaction data is limited. We develop a computational method, chromatin interaction neural network (ChINN), to predict chromatin interactions between open chromatin regions using only DNA sequences. ChINN predicts CTCF- and RNA polymerase II-associated and Hi-C chromatin interactions. ChINN shows good across-sample performances and captures various sequence features for chromatin interaction prediction. We apply ChINN to 6 chronic lymphocytic leukemia (CLL) patient samples and a published cohort of 84 CLL open chromatin samples. Our results demonstrate extensive heterogeneity in chromatin interactions among CLL patient samples.


Asunto(s)
Cromatina , Aprendizaje Automático , Redes Neurales de la Computación , Secuencia de Bases , Biología Computacional , Genoma , Humanos , Leucemia/genética
18.
Brief Bioinform ; 22(6)2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34263910

RESUMEN

Epigenomics and transcriptomics data from high-throughput sequencing techniques such as RNA-seq and ChIP-seq have been successfully applied in predicting gene transcript expression. However, the locations of chromatin loops in the genome identified by techniques such as Chromatin Interaction Analysis with Paired End Tag sequencing (ChIA-PET) have never been used for prediction tasks. Here, we developed machine learning models to investigate if ChIA-PET could contribute to transcript and exon usage prediction. In doing so, we used a large set of transcription factors as well as ChIA-PET data. We developed different Gradient Boosting Trees models according to the different tasks with the integrated datasets from three cell lines, including GM12878, HeLaS3 and K562. We validated the models via 10-fold cross validation, chromosome-split validation and cross-cell validation. Our results show that both transcript and splicing-derived exon usage can be effectively predicted with at least 0.7512 and 0.7459 of accuracy, respectively, on all cell lines from all kinds of validations. Examining the predictive features, we found that RNA Polymerase II ChIA-PET was one of the most important features in both transcript and exon usage prediction, suggesting that chromatin loop anchors are predictive of both transcript and exon usage.


Asunto(s)
Ensamble y Desensamble de Cromatina/genética , Cromatina/genética , Biología Computacional/métodos , Exones , Transcripción Genética , Metilación de ADN , Epigénesis Genética , Epigenómica/métodos , Regulación de la Expresión Génica , Histonas/metabolismo , Modelos Biológicos , Reproducibilidad de los Resultados
19.
Artículo en Inglés | MEDLINE | ID: mdl-33909566

RESUMEN

Automatic sleep stage mymargin classification is of great importance to measure sleep quality. In this paper, we propose a novel attention-based deep learning architecture called AttnSleep to classify sleep stages using single channel EEG signals. This architecture starts with the feature extraction module based on multi-resolution convolutional neural network (MRCNN) and adaptive feature recalibration (AFR). The MRCNN can extract low and high frequency features and the AFR is able to improve the quality of the extracted features by modeling the inter-dependencies between the features. The second module is the temporal context encoder (TCE) that leverages a multi-head attention mechanism to capture the temporal dependencies among the extracted features. Particularly, the multi-head attention deploys causal convolutions to model the temporal relations in the input features. We evaluate the performance of our proposed AttnSleep model using three public datasets. The results show that our AttnSleep outperforms state-of-the-art techniques in terms of different evaluation metrics. Our source codes, experimental data, and supplementary materials are available at https://github.com/emadeldeen24/AttnSleep.


Asunto(s)
Aprendizaje Profundo , Electroencefalografía , Redes Neurales de la Computación , Sueño , Fases del Sueño
20.
Bioinformatics ; 37(16): 2432-2440, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-33609108

RESUMEN

MOTIVATION: Synthetic Lethality (SL) plays an increasingly critical role in the targeted anticancer therapeutics. In addition, identifying SL interactions can create opportunities to selectively kill cancer cells without harming normal cells. Given the high cost of wet-lab experiments, in silico prediction of SL interactions as an alternative can be a rapid and cost-effective way to guide the experimental screening of candidate SL pairs. Several matrix factorization-based methods have recently been proposed for human SL prediction. However, they are limited in capturing the dependencies of neighbors. In addition, it is also highly challenging to make accurate predictions for new genes without any known SL partners. RESULTS: In this work, we propose a novel graph contextualized attention network named GCATSL to learn gene representations for SL prediction. First, we leverage different data sources to construct multiple feature graphs for genes, which serve as the feature inputs for our GCATSL method. Second, for each feature graph, we design node-level attention mechanism to effectively capture the importance of local and global neighbors and learn local and global representations for the nodes, respectively. We further exploit multi-layer perceptron (MLP) to aggregate the original features with the local and global representations and then derive the feature-specific representations. Third, to derive the final representations, we design feature-level attention to integrate feature-specific representations by taking the importance of different feature graphs into account. Extensive experimental results on three datasets under different settings demonstrated that our GCATSL model outperforms 14 state-of-the-art methods consistently. In addition, case studies further validated the effectiveness of our proposed model in identifying novel SL pairs. AVAILABILITYAND IMPLEMENTATION: Python codes and dataset are freely available on GitHub (https://github.com/longyahui/GCATSL) and Zenodo (https://zenodo.org/record/4522679) under the MIT license. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...